	Topic/ Objective:	Name:	
Physics		Period: Date:	
Essential Question:			
Questions:	When forces are combined, forces can be added. Note: are established using (+) and (-) signs. When forces are in opposite directions, the force is the in of the largest force. When multiple forces act on object, all of the forces can be added together to find the () on the object. Force Vector Addition Samples:		
	$\frac{3 \text{ N}}{4 \text{ N}} = \frac{1 \text{ N}}{}$		
	4 N 3 N = 5 N Use the Pythagorean Theorem		
	$\begin{array}{c} 3 \text{ N} & 3 \text{ N} \\ \hline \text{To the right is positive} \end{array} = \begin{array}{c} 0 \text{ N} \\ 1 \text{ N} \\ \end{array} = \begin{array}{c} 0 \text{ N} \\ \text{Up is positive} \end{array}$		
	When the net force is, the forces are velocity stays the same.		
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	e	
	When the net force is to velocity changes ACCEL		
Summary:			

Questions:	Notes:	
	When the are: $F_{NET} = or \Sigma F =$	
	The object is at rest so $(v = 0 \text{ and } a = 0) \dots$	
	THIS IS CALLED	
	The object moves at ($v\neq 0$ and $a=0$)	
	This is called When The are:	
	$F_{NET} \neq $ or $\Sigma F \neq $	
	The velocity is ($a \neq 0$)	
	The object is (velocity is changing)	
	THIS IS CALLED DISEQUILIBRIUM.	
Summary:		